杭州电子科技大学自动化学院 AI钱塘论坛(第3期)—— 王子栋教授学术报告会

发布者:王加莲发布时间:2024-05-17浏览次数:340

主题:Handling Class Imbalance and Small Sample Issues: Foundation, Algorithms, and Applications

报告人:王子栋教授

时间:202452114:30-15:30

地点:二教南228会议室

报告摘要: it is usually difficult to collect high-quality labels, and this leads to two issues in deep learning, namely, the class imbalance issue and the small sample issue. In this talk, we first introduce some background knowledge about the deep learning from the perspectives of concepts, techniques, applications and challenges. Then, we introduce three state-of-the-art algorithms for solving the class imbalance and small sample issues: 1) a novel contrastive adversarial network for minor-class data augmentation; 2) a novel subdomain-alignment data augmentation approach; and 3) a novel prototype-assisted contrastive adversarial network for weak-shot learning. All the three algorithms are applied to pipeline fault diagnosis, which outperform existing ones. Finally, we conclude our main contributions and some future directions.

报告人简介:

王子栋,教授,现任英国伦敦Brunel University教授,欧洲科学院院士,欧洲科学与艺术院院士,IEEE FellowInternational Journal of Systems Science主编,Neurocomputing主编。多年来从事控制理论、机器学习、生物信息学等方面研究,在SCI刊物上发表国际论文七百余篇。现任或曾任十二种国际刊物的主编、副编辑或编委。曾任旅英华人自动化及计算机协会主席、东华大学国家级领军人才、清华大学国家级专家。


联系我们
地址:杭州市杭州经济开发区白杨街道2号大街1158号
电话:
邮箱:
Copyright © All Rights Reserved 中国・浙江・杭州 浙ICP备12028388号-2.浙公网安备34030002000595号